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Introduction

- The major sources of inspiration for this book are the recent rapid advancements
in microtechnology and nanotechnology. Microtechnology deals with devices and

materials with characteristic lengths in the range of submicron to micron scales
(0.1-100 p.m), while nanotechnology generally covers the length scale from 1 to
100 nm. For example integrated circuits are now built on transistors with characteristic
device length scales around 100 nm. The semiconductor industry roadmap predicts that,
in 2010, the characteristic length in integrated circuits will further shrink to 25 nm
(SEMATECH, 2002). In the late 1980s, microelectronics fabrication technology began-
to impact mechanical engineering, and the field of microelectromechanical systems,
or MEMS, blossomed (Trimmer, 1997). Meanwhile, nanoscience and nanotechnology,
explored by a few pioneers (Feynman, 1959, 1983), are currently generating much
excitement across all disciplines of science and engineering. The fields of micro- and
nanotechnologies are enormous in breadth and cannot be covered completely in any
siﬂglé book. In this book, we focus on microscopic mechanisms behind energy transport,

. particularly thermal energy transport. As the device or structure characteristic length

scales (such as the gate length in field-effect transistors, used to build computers, and the

film thickness in coatings) become comparabile to the mean free path and the wavelength

of energy and information carriers (mainly electrons, photons, phonons, and molecules),
some of the classical laws are no longer applicable. By examining the microscopic
pictures underlymg transport processes, we will develop a consistent framework for
treating thermal energy transport phenomena from the nanoscale to the macroscale.

In this chapter, we will first give a few examples of micro- and nanoscale transport
phenomena from contemporary technologies to provide motivation for the rest of this
book. We will then briefly summarize classical laws governing heat transfer processes

3
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- ~10,060 rpm
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Figure 1.1 Nanoscale transport examples in information-oriented devices, (a) & (b): AMOSFET
device (courtesy of IBM) and electron energy dissipation ina MOSFET (courtesy of Dr. S.E. Laux
and Dr. M.V. Fischetti), indicating most heat is generated in nanometer region at the drain, Heat
conduction from such small source cannot be described by Fourier law; (c) & (d): A InAs/AlSb
based quantum cascade laser is made of many layers of thin films, each ranging from a few to
hundreds Angstrom thick (courtesy of Dr. S. Pei). These films have thermal conductivity values
significantly lower than those of their bulk materials; (e) & (f): A disk drive in magnetic data

storage with the slider head hovering about 10 nm on top of the disk rotating at 10,000 rpm. Fluid

flow through the gap between the slider and the disk is rarefied and cannot be described by the
Newton shear stress law.

chip from Intel Corporation, for example, has an area of ~ 1 cm? and dissipates about
60 W of heat. The size of the fan used to maintain the chip temperature below its standard
(typically 80-120°C) is much larger than the chip itself. As engineers develop various
cooling solutions, it also becomes clearer that heat transfer characteristics must be con-
sidered at the device level (Cahill et al., 2002). The most important device in a computer
chip is the metal-on-insulator field-effect transistor or MOSFET (Sze, 1981), as shown -
in figures 1.1(a) and (b). The source, drain, and channel are made of doped silicon
(or other types of semiconductor). Electrons (or holes) flow from the source into the
drain through the channel under an externally applied voltage between the source and
the drain. The width of the channel is controlled by another voltage applied between
the back of the substrate and the gate electrode, which is insulated from the channel
by a very thin silicon dioxide layer. A MOSFET is thus like a variable resistor with its.
resistance controlled by the gate voltage. To make faster devices, the channel length
(and thus the gate length) is shrinking by about 30% every 2 years, with the current
gate length at around 90 nm. Electrons convert most of their energy into heat in a small
region in the drain side [figure 1.1(b)]. Both modeling (Chen, 1996a) and experiments
(Svedrup et al., 2001) suggest that<he temperature rise:due to heat generation in the
small region is much higher than that predicted by the Fourier law, which can accelerate
the failure of the device. As another example, semiconductor lasers used in telecom-
munication and data storage are often composed of multilayers of thin films, as shown
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(b) illustration of charge flow inside one pair of legs,
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Figure 1.3 Hlustration of major microelectronic device fabrication processes.

efficient thermoelectric devices (Dresselhaus et al., 1999; Tritt, 2001; Harman et al.,
2002; Chen et al., 2003). 2 N s v
Radiation transport in micro- and nanostructures is also different from that in
macrostructures because the wave properties of photons become dominant. For example,
radiation exchange between two closely spaced vacuum gaps is much higher than that
predicted on the basis of standard view-factor calculations because of tunneling and
interference effects (Domoto et al., 1970), which potentially can be used to develop
high power density thermophotovoltaic power generators (Whale and Cravalho, 2002).
Photonic crystals, a concept developed in 1987 (Yablonovitch, 1987), can be used to
design special thermal radiation surfaces with desirable properties (Fleming et al., 2002).
Using microstructures, coherent thermal radiation was recently demonstrated (Greffet
et al., 2002). ‘

There are many outstanding nanoscale transport problems related to the fabrication
of nanodevices and synthesis of nanomaterials. As an example, consider a typical fabri-
cation process, shown in figure 1.3, for an integrated circuit. Important transport issues
exist in almost every step and some of them are particularly relevant to the nanoscale
transport discussed in this book. With regard to the process illustrated in figure 1.3,
in step 1, heat transfer and fluid flow problems in crystal growth are in the continuum
range and have been addressed extensively in literature. Many of the material deposition
processes (step 3) occur at high temperatures and under low pressures. Atoms or gas
molecules have long mean free paths at low pressures, and this must be considered in
developing proper working conditions for filling trenches between devices. Lithogra-
phy processes (step 4) should consider photon transport carefully. Optical interference
and scattering effects can be either detrimental or useful for the lithography techno-
logy. Heat transfer issues arise in both the mask-making and lithography processes.
For example, some candidates for next-generation lithography, such as extreme
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Figure 1.4 Examples of nanowires and nanotubes synthesized by various methods: (a).a pair
of bismuth nanowires obtained by pressure injection into a template (Dresselhaus et al., 2001;
courtesy of Dr. M.S. Dresselhaus), (b) TiO3 nanowires obtained by vapor condensation (courtesy
of Dr. Z.E Ren), (c) carbon nanotubes grown by plasma CVD (Ren et al., 1998; courtesy of
AAAS).

ultra-violet lithography (EUV) and X-ray lithography, rely on multilayer structures for
reflecting light (Hector and Mangat, 2001). The consequence of reduced thermal conduc-
tivity on mask reliability has yet to be investigated. The synthesis of nanoscale materials
is a wide-open field and many nanomaterial and nanostructure synthesis methods being
developed raise intriguing nanoscale transport questions. For example, nanowires and
carbon nanotubes, shown in figure 1.4, have been synthesized with several different
methods such as chemical or physical vapor deposition, filling of templates, plasma
deposition, and laser ablation (Morales and Lieber, 1998; Ren et al., 1998; Dresselhaus
et al., 2001). Understanding the transport processes during nanomaterial formation will
allow better control of the final material quality.

The preceding examples emphasize the small length scales involved in nanodevices
and nanomaterials. SHort time scales are dlso becoming increasingly.important. Similar
questions can be raised for transport at short time scales as for the small lengih scales.
Lasers can deliver a pulse as short as a few femtoseconds (1 fs = 10~155). Energy
transduction mechanisms at such short time scales can differ significantly from those at
macroscales (Qiu and Tien, 1993). Microelectronic devices are pushing to the tens of
gigahertz clock frequency with much shorter transient times. The temperature rise of the
device in such short time scales can be very different from that predicted by the Fourier
law (Yang et al., 2002).

The examples given above illustrate a few of the motivations behind the rapid devel-
opment in micro- and nanoscale heat transfer research over the last decade (see Tien and
Chen, 1994: Tien et al., 1998). In the meantime, similar developments are occurring in
various fields, as evidenced in the strong interest in nanoscience and nanotechnology
from numerous fields of science and engineering, as well as from industry. Yet we are
only at the entrance, and the room at the bottom is big. The convergence of interests from
disparate fields into common subjects also creates confusion because different languages

are used in each field for similar phenomena. For newcomers, these differences are often .;"

intimidating. One of the objectives of this book is to get the readers familiar with the
terminologies. In fact, once they get involved, the readers will find that drastically

different equations used in unrelated fields, such as tii¢/Fourier law for heat conduction &
and:the drift-diffusion equation for electrical current flow, actually originate from the %
same principle. For this reason, the text will adopt a parallel treatment of different energy

carriers whenever possible.
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1.2 Jlassical Definition of Temperature and Heat

The classical definition’of heat transfér from thermodynamics can be stated as follows:

Heatuansfexmmeene:gyﬂowmthnbuuudm&sofasyswmuma_ ;
difference:” We can emphasize several points in this definition: heat transferis a form of
energy flow; heat transfer is associated with a temperature difference; and ﬁnally, heat
transfer is a boundary phenomenon. . -

- Since heat transfer is driven by temperature dlfferences it is necessary that we
pay. attention to the definition of temperature. In classical thermodynamics, temper-
ature is defined on the basis of the concept of thermal equilibdum. If system A is
in thermal equilibrium with system B, then system A and system B have the same
temperature. In other words mmpcmmzs aquantity that describes the;malethbnqm
phenomena.

These definitions of temperature ‘and heat transfer are 1ndependent of the matenal aud
serve well in establishing the universality of classical thermodynamics. Their strengths,
however, are also their weaknesses. These definitions are devoid of the physical micro-
scopic pictures underlying heat transfer processes and the meaning of temperature. This
book aims to provide a more detailed picture of thermal energy transport processes. We
will study how heat is transferred at the microscopic level and how temperature should
be defined for transport processes that are intrinsically nonequilibrium.

1.3 Macroscopic Theory of Heat Transfer

There exist three basic modes of heat transfer: conduction, convection, and thermal
radiation. We briefly review the classical laws that are used to describe these modes. Later
in this book we will show how these laws can be derived and on what approximations
they are built.

1.3.1 Conduction

Heat conduction represents the energy transfer processes through a mediuri, caused by
a temperature difference due to the randomn motion of heat carriers in the substance.
The key is that a medium is needed for heat conduction, and heat is the part of the
energy. that is carried around through random motion of heat carriers such as molecules.
An example is heat transfer through a solid wall separating the inside and the outside
of a room, which is due to the random vibrations of atoms within the wall materials.
Heat conduction processes are usually modeled on the basis of the Fourier law (Joseph
Fourier, 1768-1830) that relates the local heat flux to the local temperature gradieAnt'

q=—kVT (1.1)

where k is the thermal conductivity, which is a temperature dependent material property
and has units of [Wm'lK_l], q has units of [Wm™2], and V is the gradient operator
such that

VI = —&+ —§+— 2)
TPiia y+ =L (12)
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Figure 1.5 Thermal conductivity as a function of temperature for representative materials (data ‘

‘from Touloukian et al., 1970, and http://www.chrismanual.comlDefault.htm).

where f, y, and % are the unit vectors along coordinate directions. Equation 1.1)is -

called the Fourier law in honor of the mathematician who first used it to solve heat con-
duction problems. It is called a law because, at the time of its creation, it was a postulate
based on the observation of experimental results. This law applies to most engineering
situations and is the foundation of classical heat transfer analysis. Thermal conductivity

of materials is a very important matérial property. The higher the thermal conductivity, -

the better the material conducts heat. Figure 1.5 shows the thermal conductivity of some
common materials, We notice that the temperature dependence of thermal conductivity
of various materials is quite different. The value of the thermal conductivity spans,
 several orders of magnitude, from 10~ Wm~1K~! for gas to 10° Wm™K~" for solids
at low temperatures. Diamond is the best thermal conductor among naturally existing
materials. O ’ _
At this stage, we raise the following guestions for interested readers. Why do
Q thermal conductivities of various materials differ not only in magnitude, but also in
¢ their temperature dependence? Is the Fourier law applicable to nanostructures? Do
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= . Temperature
= Velocity ' Profile

Profile <3 ‘ T,

Figure 1.6 Forced convection over a solid surface. Fluids close to the boundary form a boundary
layer in which temperature and velocity vary (thermal and momentum boundary layers may
have different thicknesses) from their values at the wall to those outside the boundary layer.

nanostructures have the same thermal conductivity as their bulk counterparts? We will
find answers to these questions thronghout the text. ‘ ‘

1.3.2 Convection

Convection heat transfer occurs when a bulk fluid motion overlaps a temperature
gradient. When fluid molecules move from one place to another, they carry internal
energy with them. In most situations, like the one shown in figure 1.6, we are interested
in the heat transfer between a solid surface and the fluid. The convection heat transfer
rate O [W] between a solid surface at temperature Ty and a fluid at temperature T, can
be expressed by Newton’s law of cooling (Isaac Newton, 1643-1727) ‘ -

0 =hA(T, — T,) ‘ (1.3)

where h {Wm'2 K—1]is galled the heat transfer coefficient and A is the surface area.

_ Unlike the thermal conductivity, the heat transfer coefficient is not a material property.
"t is a flow property that depends on the flow field, fluid properties, and the geomefry

of the object over which the fluid flows. Convection is categorized into two types:
natural convection in which the fluid motion is created by the buoyancy force due to the
difference in the densities of hot and cold fluids, and forced convection in which the fluid
is set into motion by some other means such as a pump or a fan. Heat transfer between
a solid surface and a liquid undergoing a phase change, that is, boiling or condensation,
is also characterized by a heat transfer coefficient. 1
Although Newton’s law of cooling is simple in form(!l is difficult to determinein
general. The heat transfer coefficient is usually determined Dy experiment, although
analysis and numerical simulation can be performed for certain simple geometries and
flow conditions. Table 1.1 gives some empirical relations and ranges of heat trans-
fer coefficients for simple geometries, mostly under laminar flow conditions. These
empirical relations are expressed using nondimensional parameters such as the average
Nusselt number (Nu, = hL/k) (Wilhelm Nusselt, 1882-1957), the Reynolds number
(Rey = uL/v) (Osborne Reynolds, 1848—-1912), and the Prandtl number (Pr = v/a)

- (Ludwig Prandtl, 1875-1953), where L is a characteristic length, u is the fiuid velocity, v
 the kinematic viscosity [m2s™1], & the thermal diffusivity [m?s~], and the bar indicates

average properties.
dn:convection heat transfer analysis, it is usually assumed that the fluid molecules at
the wall are stationary relative to the wall and have temperatures identical to that of the -

[
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i I e o
Table 1.1 Convection heat transfer correlations for common cenfigurations

Configuration Correlation

1. Forced convection: fully developed

laminar flow inside pipes with
constant wall temperature

2. Forced convection: laminar boundary
layer on an isothermal flat plate

3. Force coovection: flow across a
cylinder of extemnal diameter D

4. Forced convection: flow across a
sphere of external diameter D

5. Natural convection: boundary layer
on an isothermal vertical wall of
length L

6. . Natural convection on a heated
isothermal horizontal plate facing up,
or a cooled plate facing down

7. Natural convection on a heated
isothermal horizontal plate facing
down, or a cooled plate facing up

Nup,, = 3.66 (circular pipe), 7.54 (paralle! plates)

Rep, < 2500, Nup, = RDy/k, Rep, = @Dp/v, .
Dy =4Ac/p. Ac= cross-sectional area, p = perimeter;
properties evaluated at the avernge of inlet and outlet
temperatures. 3 :

W = 0.664 Rel/2 Pri/3
103 < Rep, <5x 10°, Pr > 0.5

. NuD =vﬁw—_m——wm; REDP)‘ < 0.2

1251

=" 0.62 Repr pPr! Sk
NuD=0'3+[I+(G.4!Pr) ] v‘R€D<10‘PY?0-5

Nap =2 + (04 Relf? +0.06 Rely ) Pro4(n/uy) V4
3.5 < Rep < 7.6 x 10% 0.7 < Pr <380

" All properties except |Ly, are evaluated at Too

L TP L A ST

ug =068 + s paydTeps AL

where Rayleigh number Raz = gB(Ty — Ta)L/(@v),
g = gravitational acceleration; 8 = thermal expansion
coefficient

Ny = 0.54 Ra}/*; 10* < Ray, < 107, Ray, defined in (5)
L = A/ p = ratio of the plate surface area to perimeter

Nar, = 0.27 Raj/*; 10° < Ray, < 1010
Ray and L defined in (5) and (6), respectively

174
8. Natural convection on an isothermal
horizontal cylinder of external
diameter D
‘ : = 0.589 Raj)" 1
9. Natural convection on a sphere of Nup =2+ ———--——-Em;—qg: Rap < 10°*, Pr = 0.7
. [1++(0.469/ Pr)"/17]
external diameter D

T 0.518 Ra e g
Nup_0.36+n+szwh) 7 ;107% < Rap < 10

Note: All properties should be calculated at the average temperature of the wall and the fiuid far away from the wall, unless
otherwise mentioned, The Nusselt number is averaged over the area of the fluid-solid interface.

solid: This assumption is called the no-slip boundary condition. Referring to figure 1.6,
the no-slip boundary condition is ‘ 2 I

15 (%, Yy=0 = ty(x, Mly=0 =0 A

T, Vly=o=Tw : (1.5)

where u, and uy are the fluid velocity components in Cartesian coordinates, T the fluid
temperature distribution, and T,, the temperature of the solid surface. Because fluid
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particles are stationary on the surface, the heat transfer from the wall to the fluid in the
vicinity of the sirface is actually through heat conduction. We can calculate this heat
transfer rate according to the Fourier law, ‘

Combining egs. (1.3) and (1.6) leads to the expression for calculating the heat transfer
coefficient 2 ‘ °

—k %_3‘: | :
h= =0 ? ly=0 . an
- Ta :

The above equation furnishes a formula for determining the heat transfer coefficient,
provided the fluid temperature gradient at the wall can be determined. This task usually
requires solving the velocity and temperature distributions of the whole flow field on
the basis of the Navier-Stokes equations. In typical heat transfer or fluid mechanics
textbooks, the Navier—Stokes equations are derived on the basis of the conservation
principles for mass, momentum, and energy, together with constitutive relations such as
the Fourier law, which relates the heat flux to the temperature gradient, and the Newton
shear stress law, which relates the local velocity gradient to the local shear stress: We
will discuss the Navier—Stokes equations in greater detail further in chapter 6. In its
simplest form, assuming that the velocity component u in figure 1.6 depends on y only,
the Newton shear stress law can be written as

duy

ﬂg (1.8)

Ty =
‘where the first subscript on t denotes the direction of the shear stress and the second
subscript denotes the plane of action of the shear stress (y = constant plane), and
[N s m™2] is the dynamic viscosity (or absolute viscosity). A popular unit for u is
P (poise), where 1 P = 0.1 N s m~2. The ratio of the dynamic viscosity to the fluid
fiensity, wlp, gives the kinematic viscosity, v. Viscosity is generally regarded as an
intrinsic property of the fluid. ‘

Going back to the theme of this book, microfluidics, which deals with fluid flow
at micro- and nanoscales, has attracted significant attention due to its applications in
chemical and biological analysis (Ho and Tai, 1998). Many questions can be asked about
fluid flow and heat transfer at such scales. Is the Newton shear stress law applicable to
fluid flow at these length scales? Is the no-slip boundary condition always correct? In
Flﬁs book, we will answer these questions via the Boltzmann equation, surface force
analysis, and molecular dynamics simulations.

1.3.3 Radiation

?’hennal radiation, the third basic heat transfer mode, is different from conduction
and convection. Heat transfer by thermal radiation does not require a medium and can
propagate in vacuum, and the energy is carried by electromagnetic waves. A blackbody,

(16)

V)
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Figure 'l .7 Blackbody emissive power as a function of wavelength at different te

which is an idealized
radiates according to Planck’s law

object that emits the maximuni amount of thermal radiatiqn,

1 1.9)
ep, = Ai(ecz/AT - 1) (

where Ci(= 37,413W pm* cm™?) and Cy(= 14,388 umK) are constants, 1 is the
wavelength of the radiation, and T is the absolute temperature. The spectral emis-
sive power, ep,1, is defined as the radiated power per unit emitting area and per unit
wavelength interval, '
Power
=— (1.10)
b = AAAX

~1_Examples of blackbody radiation spectra ar® shown in

and has units of Wm™2pum 1 e sh
¢ maximum emissive power occurs is given by

figure 1.7. The wavelength at which th
the Wien displacement law : _
ImaxT = 2898 umK (1.11)
ody temperature of 5600 K and peaks around

Solar radiation has an equivalent blackb
0.52 pm. Thus, the fact that the human visi

_incidental.
Integrating Eq. (1.9) over all waveleng

a blackbody

ths, we obtain the total emissive power of

+9]
ey = f epadr =oT? (1.12)
0

® What )s Cokerou e 7 A ieg

bility range is between 0.4 ar;d 0.7 pmis not

A wdlpog
X : ? RODUCTION 15
where & (= 5.07x 1078 Wm™2 K~*) is the Stefan-Boltzmann constant. Equation (1.12)
is called the Stefan—Boltzmann Law. - :
Real objects typically radiate less than a blackbody. The emissivity characterizes the
thermal radiation characteristics of a surface. The spectral emissivity is defined as

€. =er/epx “ 1.13)

where &, is the spectral emissive power of the surface.

As a form of electromagnetic wave, the propagation of thermal radiation can be
described by Maxwell’s equations. C@lculaﬁng’ the radiative heat transfer, however,
seldom requires the solution of these equations. Typically, we ) i I
tion carried: by the electromagnetic waves and treat the thermal radiation as/incoheren
shoton particles, or bundles of rays propagating in straight lines. “These rays can be
scattered, absorbed along the path, or enhanced by emission of the medium along the
propagation direction. Upon reaching a surface, the thermal radiation can be reflected,
absorbed, or transmitted. Calculating the radiation heat transfer between real surfaces
requires information about the surface radiative properties, the geometrical arrangement
of the surfaces, and the properties of the media between the surfaces. As an example,
consider the simplest situation of two infinite, black, parallel walls separated by a
vacuum. The radiation heat transfer per unit area, g, between the two surfaces is the
difference of the energy carried by two groups of counter-propagating photons: one from
the hot side toward the cold side [o T}'], and the other from the cold to the hot side [o i

g=o(T} ~T3) (1.14)

In contrast to solving differential equations in heat conduction and convection to

get the heat flux, imghe case of thermal radiation we usually deal with the trajectory of
photons through the use of view factor, or integral equations when scattering isinvolved.
This approach is necessary because photons typically trayel a long distance before they
are scattered: In many radiation problems, photons collide more frequently with the

walls rather than being scattered along their paths. In this sense, thermal radiation is

'S

always dealing with size or boundary effects. For heat conduction and convection in | (||

nanostructures, the heat carriers experience similar situations to photon transport in
macrostructures because electrons, phonons, or molecules collide more often with the
boundaries and interfaces than they collide with each other. Thus, many nanoscale
transport processes can be understood through an analogy with photon transport on the
macroscale. Such an analogy will be pursued throughout the text, whenever applicable, |
The transport of photons in micro- and nanostructures usually differs from thatin
macrostructures because the wavelength becomes comparable to or even longer than
the characteristic device dimensioni; Under such circumstanges, the phase information
can no longer be ignored and the wave properties of photens, such as interference,

diffraction, and funneling, become important. The treatment of the propagation of
electromagnetic waves is well developed in the fields of optics and elecromagnetic =
waves (Born and Wolf, 1980). Many results in these fields can also be applied to thermal -
radiation in small spaces. In later chapters, we will see that the wave effects in micro-
and nanostructures lead to significant deviations from the thermal radiation relations
developed for macrostructures. For example, radiation heat transfer between nanoscale
objects can be significantly higher than blackbody radiation (Domoto et al., 1970). An

.
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Figure 1.8 Energy conservation
applied to a closed system.

understanding of the wave nature of photons. provides a bams for comprehending the
material waves and quantum size effects on other energy carriers such as electrons and
phonons (Chen, 1996b).

1.3.4 Energy Balance

The equations that we have reviewed for different transport processes relate the heat
flux to the temperature and the temperature gradient. Equations of this type are called
constitutive equations. Each of them is a single equation with two unknowns: the

heat flux and the temperature. In general, another equation is needed to solve for T'

and q. We use conservation principles to establish this other equation. For ht?at transfer,
the most important conservation principle is the first law of thermodynamics (energy
conservation), which states that heat transfer into a system minus the wo.rk output from
a system equals the change of the internal energy of the system. Referring to a closed
system, as shown in figure 1.8, the first law of thermodynamics 1s

Q— W =dU/dt 3 £ 1.15)

where Q is the rate of heat transfer into the system, W is the power output, and U is t'he
systém energy, that is, the sum of the internal energy, the kinetic energy, and the potential

energy. In many heat transfer situations, the changes in the kinetic and potential energy

are usually negligible such that U represents the internal energy only. . _

One major difference between the constitutive equations and the conservation equa-
tions is that the former relate to specific materials and processes but may not be valid in
all cases, while the latter are universal. For example, the Newton law of shear stress 18
valid for Newtonian fluids but not for non-Newtonian fluids. Similarly, the Fourier heat
conduction equation may not be valid for all heat conduction processes, as we \.)vill'soon
show. On the other hand, no evidence exists that the first law of thermodynamics 1s not
valid, although there are discussions in current literature on the validity of the sef:ond law
at small length and short time scales (Wang et al., 2002). As we move 10 tl}e micro- .and
nanoscale, what may change are the conservation equations. The conservation equations
are expected to hold true.

As an example of using the conservation equations, we consider a region with heat’

conduction as the only mode of heat transfer with no work transfer and no interr.1a1 heat
generation. The heat conduction across the boundary into the solid can be obtained by
integrating eq. (1.1) over the surface consisting of the boundary (referring to figure 1.8),

b 5 # (—kVT) dA (1.16)
5
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where dA is a differential area on the boundary with the norm pointing outward; thus a
minus sign is added to eq. (1.16) to indicate heat conduction into the region. Substituting
eq. (1.16) into eq. (1.15), we get

—#(—kVT) edA = %/udV (117

S v

where u is the internal energy per unit volume and the integration on the right hand
side is over the volume. The left-hand side of eq. (1.17) can be converted into volume

 integration using Gauss’s divergence theorem and the right-hand side can be further
related to temperature through the chain rule and the specific heat c,

/v.(kvr)dv =/pc%§dV (1.18)
Vv 14 .

For this equation to be valid in any region, we must have
aT
V(kYT) =) pcﬁ (1.19)

which is the familiar heat diffusion equation that is used to solve heat conduction
problems on the macroscale.

1.3.5 Local Equilibrium

In thermodynamics, we define equilibrium as a state of an isolated system in which no
macroscopic change can be observed as a function of time: Quantities such as temper-
ature and pressure are defined only under equilibrium conditions. Transport processes
happen when the system is driven out of equilibrium. A system undergoing steady-state
heat conduction is not in an equilibrium state. Although no change occurs in such a
system, the steady state does not violate the definition of equilibrium, since the system
is not isolated. However, the nonequilibrium state of the system does pose a problem
because the temperature cannot be defined in accordance with thermodynamics. It would
seem the constitutive relations we have introduced are meaningless. This dilemma can
be resolved by employing the concept of local equilibrium. Although a system may be
out of equilibrium globally, the deviation from equilibrium at each point is usually small.
A small region surrounding each space point may be approximated as being in equili-
brium, which allows us to define a local temperature, pressure, and chemical potential.
We have not, however, established rigorous criteria based on when we can assume local
equilibrium and we do not know yet how small this region should be. We can further
ask what happens if the system is smaller than this minimal size.

1.3.6 Scaling Trends under Macroscopic Theories

The characteristic length scales at which the classical theories discussed in this section
fail are typically on the order of submicrons, although the exact demarcation line
depends on the type of energy carriers, the media, and the temperature. A wide range

v —
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of microdevices exists with characteristic lengths larger than microns for which the
classical transport theories are still applicable. Its, however, interesting to-consider
how:the miniaturization will change the heat transfer characteristics. As the device. size
shrinks, the ratio of surface area to volume-increases, leading to significant changes
in thermal, electrical, and mechanical behavior- A well-known example in mechanics
is the diminishing effect of inertia and the increasing importance of surface tension,
as is evident in the fact that ants (with a characteristic dimension of millimeters) are
not injured by falling off a table but can be easily trapped in a drop of water, which
is contrary to what may happen to humans (with 2 characteristic length of meters)
in similar situations. In table 1.2, we show some examples of the scaling trend for
simple heat transfer configurations, assuming that macroscopic transport theories are

still applicable.

1.4 Microscopic Picture of Heat Carriers and Their Transport

. This section briefly addresses the following nnwmmown (1) What carries heat? (2) How
much energy do the carriers possess? (3) How fast do they travel? and (4) How far do
they travel? The explanation will be brief here since these questions will be discussed

in more detail in subsequent chapters. :

1.4.1 Heat Carriers

People used to think that heat was carried by a special form of matter termed calories,
which were supposedly massless and colorless. When two objects at different temper-
atures are in contact with each other, calories from the object at the high temperature
would flow into the object at the lower temperature. This view prevailed in the early 19th
century and contributed significantly to the development of classical thermodynamics.
Of course, we now know that this is an incorrect picture. In fact, the caloric theory,
despite its inception in the late 18th century, was completely abandoned by the middle
of the 19th century. Yet most of the results on classical thermodynamics derived from
such a wrong picture turned out to be correct and are still valid today because, as
we mentioned before, classical thermodynamics does not consider detailed pictures of
heat carriers. A .
Heat conduction actually results from the random motion of the material particles
in the system carrying thermal energy from one location to another. These material -
particles are electrons, atoms, and molecules in gases, liquids, and solids. We use heat
.conduction in a gas, as shown schematically in figure 1.9, to illustrate the microscopic
energy transport process. Gas molecules near the hot wall collide with the solid atoms
of the wall often and gain a higher kinetic energy, that is, a higher random velocity.
These molecules are in random motion and have the possibility of moving toward the
lower temperature end. During this process, they collide with molecules having smaller
random velocity (and thus cooler) and pass some of the excess energy to those molecules.
Such a process cascades for all adjacent molecules until it reaches the molecules in the
proximity of the cold wall. These molecules have a higher kinetic energy than the
atoms in the solid wall and will impart their excess energy to the wall through collisions.
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Figure 1.9 Microscopic heat
conduction process through a gas.

The resultant effect is that a net energy flows from the hot wall to the cold wall due to
the temperature difference between the two walls. It should become clear that the net
energy flow is due to the random motion of the molecules and that the molecules do not
necessarily move from the hot to the cold side.

In dielectric: solid material§' (electrical insulators), heat is conducted rl.m:uugh the
vibration of atoms. The atoms are bonded to each other in a dielectric matenal‘ through
interatomic force interactions. Figure 1.10 shows a schematic of the intcratoch poten-
tial; ¢, between two atoms as a function of their separation, x. :I’he force interaction
between two atoms is the derivative of such an interatomic potential

) (1.20)
dx

If the two atoms are far apart, an attractive force exists between the atoms because
the electrons of one atom attract the nucleus of the other. When the atoms are c!(.)se. the
interaction force becomes repulsive because the electron orbits, or the.z nuciel,_c?f different
atoms begin to overlap. The minimum potential defines the ethb'n’um positions .of the
atoms. Each atom in a solid vibrates around its equilibrium position. The motion of
each atom is constrained by its neighboring atoms through the interatomic potential. A
simplified picture of the interatomic interactions in crystals can b.e repfesented by a mass-
spring system, as shown in figure 1.11(a). In such a system, the v;bratu_an of any one atom
can cause the vibration of the whole system by creating lattice waves in the sys.tem. The
propagation of sound in a solid is due to long-wavelength ]aFtice waves. If one side of Ehe
solid is hotter, the atoms near the hot side will have larger vibrational ampl;tudes', which
will be felt by the atoms on the other side of the system through the propagation and
interaction of lattice waves. Quantum mechanical principles dictate that the energy of
each lattice wave is discrete and must be a multiple of kv (except for a small modification

called zero point energy that equals /v/2), where v is the frequency of the lattice wave .

Potential Energy
A

Repulsion

. Interatomic
" Distance

Attraction

Figure 1.10 A typical interatomic

potential profile. Equilibrium Position
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Figure 1.11 (a) A mass-spring system representing interconnected atoms in a crystal, and
(b) phonon gas model replaces the solid atoms in a crystal.

and & the Planck constant (6.6 x 10734 Js). This minimum energy hv of a quantized
lattice wave is called a phonon, /A phonon at a specific frequency and wavelength is a
wave that extends through the entire crystal. The superposition of phonons of multiple
frequencies existing in the solid forms wave packets that have a narrow spatial extent.
These wave packets can be considered as particles as long as they are much smaller than
“the crystal size. Using this phonon particle picture, the spring system in figure 1.11(a)
can be replaced by a box of phonon particles as in figure 1.11(b). Heat in a dielectric
crystal is conducted by such a phonon gas similar to that in a box of gas molecules as
shown in figure 1.9. The collision of phonon particles is due to the interaction of phonon
waves, which can be further attributed to the nonparabolicity (or anharmonic) potential

‘ profile as shown in figure 1.10. A parabolic potential, according to eq. (1.20), would lead

to an ideal spring with force linearly proportional to displacement from the minimum
potential position. Phonons in such an ideal potential do not collide with each other.
In chapters 3 and 5 we will explain in more detail the phonon concept and when we can
treat phonons as particles rather than waves. _

In metals, heat is conducted by free electrons as well as by phonons. When atoms
are bonded together to form a metal, some of the electrons in the outer orbits of the
nuclei become free from the bonding of the nuclei. These free electrons can travel a
distance much longer than the interatomic distance until they are scattered by either
atoms, electrons, or impurities. Under this picture, the free electrons inside a metal

* can also be thought of as a gas—an electron gas. The heat conduction process for the .

electron gas is again similar to that shown in figure 1.9 for molecules. Electrons in a metal
travel at a velocity typically three orders of magnitude larger than phonons do. Thus,
compared to the energy carried by lattice waves, the energy flux carried by electrons is
in general much larger. Therefore, in metals, electrons are usually the dominant heat
carriers.

One may guess that, in Semiconductors, heat is probably conducted partially by
phonons and partially by electrons. That assumption is not completely correct. In fact,
heat is carried dominantly by phonons in most semiconductors, because the free electron
density in a normal semiconductor is much smaller than that in a metal. As an example,
the electron carrier density in a metal is ~10%% cm™3 while in a semiconductor it is
typically less than 10'® cm=3. Inlightly and moderately doped semiconductors, phonons

I
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are the dominant heat carriers. However, the electron contribution in a heavily doped
semiconductor can be appreciable. !

Given the above pictures of heat carriers for heat conduction processes, the convection
of heat can be understood rather easily since the only difference of convection from heat
conduction is that now heat carriers have a nonvanishing average velocity superimposed
on their random velocity. When a liquid or gas molecule moves from one place to another
due to its nonzero average velocity, it also carries its internal energy directly from one
place to another. This direct motion of internal energy in convection is very different from
heat conduction process. In the latter, heat is transferred due to the energy exchangc_ of
heat carriers in the collision process. Heat conduction process exists even in convection
process because molecules are still doing random motion. In fact, _the random mou?n
velocity of the molecules is usually much higher than the nonvanishing average velocity
in convection. However, convection is more effective than heat conduction because
energy moves directly from one place to another.

Thermal radiation involves another heat carrier, that is, electromagnetic waves. :The
propagation of electromagnetic waves emitted from a thermal source does not differ
fundamentally from those carrying TV and radio signals because all are governed by the
Maxwell equations. The major difference lies in how these waves are generated. Thermal
radiation typically refers to the electromagnetic waves that are generated by ahelat source,
while TV and radio signals are generated by an artificial source such as the oscillation qf
current in a circuit. At the microscopic level, thermal radiation is due to the oscillation of
charges in the atoms and crystals. Similarly to lattice waves, electromagnetic waves are
also-quantized as a result of quantum mechanics. An electromagnetic wave at frequency
v can have energy that is only a multiple of Av. This smallest energy quantum of an
electromagpetic field, hv, is called a photon. In fact, most people are probably more
familiar with the terminology of photon than phonon. Both of them are the basic quantum
of a wave; one for electromagnetic waves and the other for lattice vibrational waves.

1.4.2 Allowable Energy Levels of Heat Carriers

The transport of heat is due to the motion of the energy carriers discussed above and the

associated energy they carry. To describe heat transfer quantitatively, we need to know

the energy associated with these heat carriers. The possible energy states of_ heat carriers
are determined by quantum mechanical principles, which we will cover in chapters 2
and 3. Here, we will only give the reader some brief idea. For individual atoms and

“molecules, the energy levels are typically discrete. For example, the allowed energy -

levels of a harmonic oscillator, which is a good model for the vibrations of a diatomic

I molecule such as Hj, are given by

E,=hvn+1/2) (=0,1,23..) (1.21)

where v is the fundamental vibration frequency. The amplitude of the vibration must be -
such that the total energy of the molecule fits into one of the above discrete energy levels.

ﬁg‘;\ﬁn crystalline solids, the allowable energy of electrons and phonons is a function of the. -
TR ‘
i el \\%&«m\kk points in the direction of wave propagation (electron and phonon waves) and its
) magnitude equals 2 divided by the wavelength. Figures 1.12(a) and (b) show examples

wavevector. Such functional relations are also called dispersion relations. A wavevector

T

E
N = | E
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of the electron and phonon energy levels, represented by either energy or frequency,
in solids along a specific crystallographic direction, where g is the periodicity of the
atoms in the direction of the wave propagation and k is the wavevector. The allowable
energy levels form bands. Within each band, the energy is quasi-continuous because
the wavevector is discrete, as we will discuss in more detail in chapter ‘3. However,
there can be substantial gaps between different bands. The filling of the electronic
bands by electrons and the magnitude of the gaps determine whether a solid is a metal,
a semiconductor, or an insulator. The phonon band differs significantly from that for
electrons. Electron bands are typically approximated by a parabolic relationship between
the energy and the wavevector, whereas the dispersion relation between the phonon
wavelength and the wavevector is often approximated by a linear relationship.

1.4.3 Statistical Distribution of Energy Carriers

Not all the possible energy levels of energy carriers (molecules, electrons, and phonons)
will be actvally occupied by the carriers. Classical thermedynamics tells us that a non-
isolated system at equilibrium tends to minimize its energy. In a system with different
allowable energy levels, heat carriers will fill the lowest energy levels at zero tempera-
ture. At higher temperatures, some of the carriers will have higher energy levels. The
most probable energy distributions of the carriers are governed by statistical principles.
Classical statistical theory gives the probability density f(E), defined as the probability
of finding the carrier at energy E per energy interval surrounding E, for a particle in an

equilibrium system at a temperature T, = it
Y 4 ' 3 — e gNSOThCS
3‘ 5 \4 (1.22)

where kg (= 1.38 x 10723 J K1) is the Boltzmann constant, T is the absolute tem-
perature, and B is a normalization factor. Equation (1.22) is the famous Boltzmann
distribution (Ludwig Boltzmann, 1844-1906). For a monoatomic ideal gas system, the
only energy of each atom is its translational kinetic energy

mQ“‘*Mc:JanaS; E=Z02+vl+1)) -

where m is the mass of the atom and vy, vy, and v, are the components of its random
velocity. Since the probability of finding this particle to have energy between zero and
infinite speed must be one, we have

f(E) = Be—E/(kaT)

(1.23)
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m(v +vy +v2)
fdv_, f dvnyexp[ 25T ]duzsl (1.24)

Carrying out the above integration leads to

32
e ([ ) (1.25)
2mkgT
The probability density of a monatomic gas is thus
3/2 m(v? + v? +v2)
o o L exp | ~——2 =22 (1.26)
2nxgT 2T

which is called the Maxwell distribution. With this probability density, we can ca‘xlculate
other expectation values (or average values). For example, the average energy (internal
energy) of a monatomic gas moleculeis \

y (E) = fdux/dvy f —(U +v +v2) (an:BT>3/2

m(vx + 'u), + uf}
—_— = |dv
‘“p[ 2%sT )

d T (1.27)

Transforming the Cartesian coordinates vy, vy, v, into spherical coordinates makes the
above integration much easier. The final result is

(E) = —x T oweae-kin Qfﬂﬂ 1[(1 28)

Yriose bilC 6es yefotul e
The above expression means that tcmperature is a measure of the average kmet{c
energy for a monoatomic gas. Equation (1.28) is a very useful result to rememl?er aflc.l is
an example of the equipartition theorem in statistical thermodynamics. The equipartition

theorem for classical systems states that at sufficiently high temperatures (such that the .

Boltzmann distribution is valid) each quadratic term of the molecular energy conttjbutes
to the molecule an average energy g T /2. For amonoatomic gas, each molecule has three
quadratic energy components, from its translational motion, as indicated by eq. (1.23),
so that the total average kinetic energy is 3«57 /2.

Example 1.1 Speed and specific heat of gas molecules

Estimate the average speed of helium atoms as an ideal gas at 300 K, and also estimate
its specific heat at constant volume.

Solution: The average speed of molecules obeying the Maxwell distribution is

Foe i m \7? m? +v2 +v2) = g

= e Y227,

) = fdvxfdvy f U(ZJTKBT) exp 5T B
—00 -0 —oo

7 NI e N R T
=/v ki exp(— Ak >4nv.2dv= e
2nkgT ) 2kgT) Tm

0
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The mass . a helivm atom is 4 x 1.67 x 1027 kg, where 4 comes from the fact that a
helium atom has two protons and two neutrons, and 1.67 x 1027 kg is the rest mass
of a proton (a neutron has approximately the same weight as a proton). We thus obtain
the average velocity of helium atoms as 1257 ms—". To obtain the specific heat, we
know that a mole contains N4 = 6.02 x 10% (Avogadro’s constant) molecules. The
total energy of a mole of helium atoms is thus u = 3N4«p T/2. The specxﬁc heat
atconstant volume is ¢y = 0u/87 = 3k pNa/2 = 3R,/2 = 12.5T K~ mol™!, where
Ry = kN4 = 8.314 T K~! mol™! is the universal gas constant. The actual spec1ﬁc
heat of helium is in agreement with this number. : .

Comment: A quick order-of—magnitude estimation of the average speed can be
obtained by setting the average kinetic energy of each atom, 3k T/2, equal to mv2/2,
which leads to v = (3kpT/m)"/> ~1364 m s~ which is slightly h:gher than (v).

When energy levels are not continuous, the normalization factor B in eq. (1.22) can] []

no longer be determined as is done in deriving the Maxwell distribution. We will give the
distribution functions for electrons and phonons here, leaving the details to chapter 4.
The electron probability density is governed by the Fermi-Dirac dlsmbuuon and that of
phonons and photons by the Bose-Einstein distribution, :

1
exp (-‘Ef—.‘;.‘i) +1
1
exp (é—?) =1
where p is the ehemical potential. The Bose—Einstein distribution is exprcssed in terms
of the phonon energy E = hv rather than E directly.

From the above discussion, we see that temperature is only mcanmgful when we dea!
with a large number of molecules. At equilibrium, the temperature alone determines the
statistical distfibution of all the heat carriers in the system. It is meaningless to speak
of the temperature of one single particle. But it is meaningful to talk about the energy
of one particle and the average energy of a cluster of particles, even if the particles are
out of equilibrium such that they do not obey the Boltzmann distribution (or other kinds
of expected statistical distributions). Later, we will use the concept of temperature for
highly nonequilibrium systems. In these situations, temperature should be understood

as a measure of the local average energy density, but one cannot determme the statistical
distributions of the particles on the basis of temperature alone.

Fermi-Dirac distribution: f(E) = (1.29)

Bose-Einstein distribution: f(v) = (1.30)

1.4.4 Simple Kinetic Theory

By definition, heat transfer involves the motion of heat carriers generated by temper-

Cdistributed in all directions. Given the position and velocity of all heat carriers, their
subsequent motion determines the energy transport. Although, in principle, the trajectory
of these energy carriers can be traced on an individual basis, such an analytical approach
is usually impractical due to the large number of carriers existing in the medium. With
the rapid advancement of computational power, however, some problems are within

N.

- ature differences. Statistically, heat carriers generated by thermal sources are randomly .~
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Figure 1.13 Simplified
derivation of the Fourier
law based on kinetic theory.

the reach of this direct approach. We will devote a chapter (chapter 10) to molecular
dynamics, whichis based on tracing the trajectory of individual molccules: In most cases,
some kinds of averaging are necessary for practical mathematical descriptions of the heat
carrier motion. The Fourier law for heat transfer, the Fick law for mass diffusion, and .the
Ohm law for electrical conduction are the results of averaging the microscopic motion
in a sufficiently large region and over a sufficiently long time. The laws are ﬂ:lé correct
representations of the average behavior of the energy, mass, and current flow in macro-
scopic systems going through relatively slow processes. Such averaging may no longer
be valid in microscale and nanoscale domains and for high-speed processes because
the conditions for the average behavior are no longer satisfied. In subsequent chapters,
we will take a closer look at the averaged mation of heat carriers in micro- and nano-
scale systems. Here, we first introduce a simple derivation of the Fourier law from
kinetic theory. L ;

We consider 4 one-dimensional model as shown in figure 1.13. If we take an imaginary
surface perpendicular to the heat flow direction, the net heat flux across this surffur:c is
the difference between the energy fluxes associated with all the carriers flowing in the
positive and negative directions. Considering the positive direction, the carricrfs within
a distance v, T can go across the interface before being scattered. Here Ux. is the x
component of the random velocity of the heat carriers and 7 is the relaxation time—the

average time a heat carrier travels before it is scattered and changes its direction. Thus,

the net heat flux carried by heat carriers across the surface is

(1.31)

x+vsT

1 ‘
va;r r E (nEUx)

qx é -2-(n‘va)

where n is the number of carriers per unit volume and E is the energy of each carrier.
The factor 1/2 implies that only half of the carriers move in the positive x direction wh?le
the other half move in the negative x direction. Using a Taylor expansion, we can write
the above relation as :

d(Env,) :
qi= —yxr e s : : (1.32)

Now we assume that vy is independent of x, and v2=(1 /3, where v ig the average

random velocity of the heat carriers. The above equation becomes

2
vét dU dT (1.33)

INTRODUCTION 27

e,
ﬁ?@?M ] ‘\_:—’ o | b Fiqure .1 .14 Mean free path
{ N [ i { J es.t.lmanon 'for a‘box of gas molecules
/'k‘-‘ S -"}f&,»" w, ,@ @ with effective diameter d for each
A Mt ed molecule: (a) effective diameter of two
L molecules to scatter is 24, and (b) mean
free path is the average distance
(a) (b) between two consecutive scattering.

where U = nE is the local energy density per unit volume and dU/dT is the volumetric
specific heat C of the heat carriers at constant volume, which equals the mass specific
heat c times the density p, i.e., C = pc. This formulation leads to the Fourier law

g = —(Cv?t/3)dT/dx = —kdT /dx (1.34)

Although the above model is fairly crude, the expression for the thermal conductivity is
actually a surprisingly good approximation,

e ¢ flowd > k=Cv’t/3=CvA/3=pcvA/3 (1.35)

where A = vt is the mean free path—the average distance a heat carrier travels before
it loses its excess energy due to scattering. Very often, the above equation is used to
estimate the mean free path on the basis of experimental results for the other parameters
in the equation. :

1.4.5 Mean Free Path

We now give a very crude derivation of the mean free path for gas molecules. By
definition, the mean free path is the average distance that a gas molecule travels between
successive collisions. It is not the distance that separates individual molecules. Suppose
that the effective diameter of an atom (or molecule) is d, as shown in figure 1.14.*
The effective diameter for two atoms to collide is 2d and the collision cross-section is
7 (2d)2/4. If the molecule travels a distance L, it sweeps out a volume md?L. If the
molecular number concentration is n, then the number of molecules that this particle
will collide with is nrd?L. The average distance between each collision is (Kittel and
Kroemer, 1980)
L m

A= ndL ~ mpd (1.36)
where we have invoked the relation that the number of molecules per unit volume is the
density divided by the molecular weight . This expression assumes that the molecule
being considered moves but the other molecules in the volume are stationary. Dropping
this assumption leads to a more accurate expression (Tien and Lienhard, 1979),

A=—p— (1.37)
/2 pd® T

*This is not the diameter of the ion or the electron orbit. It represents the force range that a molecule exerts

~ on its surroundings.
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For an ideal gas, P = pxgT/m, 50

__ kT (1.38)
w2 Pd?

Estimating the effective diameter d of an atom or molecule requires dstzsl;ld u:fﬁ:;—
mation regarding the molecular and electronic structures of the molecul'e aﬁ e la Uk;
We can readily reason that d is proportional to the number of atoms in the mo t}c y
and the number of electrons in the atom. Let us take an order-of-magnitude value for
of 2.5 A. At P = 101 kPa, T = 300K, A is approximately 0.14 j.m. Ata l_ow Pressure,
for example, at P = 10~8 torr = 1.32 x 1079 Pa, A = 1.4.000 m, which is a v;ryl
long traveling distance and means that no collision occurs in practical ‘s?zstems |.tnft er
such a vacuum condition. In thin-film deposition processes, vacuum conditions are o er;
used to avoid contamination and the long mean free path ensures that atoms ?wll t;a;;
uninterrupted (ballistically) from the source to the depas@ng. surfac.e‘ Equation (1. IrJl
shows that the mean free path of gas molecules increases with increasing l.':rn|;.'|:mtt111=:.At
addition, the gas random velocity increases with the square root of the ten;p;rat;ue. 'l
room temperature and higher, the molar specific heat remains constant an z etl:lsay
is proportional to P/T. This effect leads to the conclusion that the thermal conﬁ 1;{: 1\;111 Ly
increases with T1/2 for gases and is independent of pressure. Check figure 1.5 for this

trend of thermal conductivity for various gases.

Example 1.2 Thermal conductivity of gas

Estimate the thermal conductivity of air.

Solution: We will use eq. (1.35) to estimate the thermal conductivity of air. We can
estimate the random velocity of air molecules from mv.2 /2 = 3ch‘ T/2, whe're m is
the average mass of an air molecule (average molar we;ght of air is 29). Tlu_slgl\ﬁs
v = 524 m s~}. At room temperature, p = 1.16 kgm™ afld c=1007Jkg™'K -
Substituting these values and a mean free path of 0.14 pum into eq. (1.3.5)3 we ob.tam
k = 0.028 W m~!K~. This is not far from the actual thermal conductivity of air at

300 K, which is 0.026 W m 1K1

1.5 Micro-.and Nanoscale Transport Phenomena
}
At small scales, many macroscopic descriptions of heat transfer become invalid. In this
section, we will provide examples to illustrate microscale transport phenomena.

1.5.1 Classical Size Eifects

One example of the classical size effect is rarefied gas heat conduction. This size effccg
occurs when the mean free path of gas molecules becomes cm:nparable to or larger tl:aan
the size of the system. We have seen that the mean frr;:e path increases with decreas;:ng
gas pressure. The air pressure in the outer atmosphere is very low and thus the mean [&Et.
path of the molecules is long. A spacecraft going through the outer gUnosphcre ¢anno

be modeled on the basis of continuum theory; this sparked a substantial amount of work
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Figure 1.15 Thermal conductivity of silicon films as a function of the film thickiess or wire
diameter. (Courtesy of M. Ashegli).

in the past on rarefied gas flow and heat transfer. Certain semiconductor manufacturing
processes are often performed in vacuum environments, for which heat transfer and fluid’
fiow may fall into the rarefied gas regime. :

Past research interests in rarefied gas dynamics and heat transfer were stimulated
by the increasing mean free path encountered in low-pressure environments. Micro-
fabrication and nanotechnology led to micrometer and nanometer structures with the
characteristic length comparable to the mean free path of gas molecules, even at normal
atmospheric pressures. The rarefaction effects must be considered for gas flow and
heat transfer in such structures. The small size also brings in additional factors. For
example, despite the fact that liquids molecules have a mean free path only on the ordet.
of angstroms, the surface charges that build up may significantly affect the heat transfer
and fluid flow in submicron channels.

Size effects, which are well studied for gases, can also be expected for electrons
and phonons, since both electrons and phonons can be considered as gases existing
within solids (electron gas and phonon gas). When the mean free paths of electrons
and phonons become comparable to or larger than an object’s characteristic length,
heat conduction in solids can deviate significantly from the predictions of the Fourier
law. The thermal conductivity of thin films or nanowires is no longer solely a material
property, but also depends on the film thickness or the wire diameter. Figure 1.15 shows
the thermal conductivity of Si single crystal thin films and nanowires as a function of
the film thickness and wire diameter,

1.5.2 Quantum Size Effects

According to quantum mechanics heat carriers such as electrons and phonons are also
material waves. The finite size of the system can influence the energy transport by altering
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Figure 1.16 Standing waves in a quantum D
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the wave characteristics, such as forming standingwaves afld creating new mo&sﬂm;
do notexist in bulk materials. For example, electrons in a thin film can be approximate

as stahding waves inside a potential well of infinite height as shown in figure l'.16. Tﬁe
condition for the formation of such standing waves is that the wavelength A satisfies the

following relation :

Couobidion P,( g]qu% aA2=Dn=12,..) RIS (139)

where D is the width of the potential well. Given the abmte electron wavelength, we Caté
calculate its momentum according to the de Broglie relation between wavelength A an

momentum p,

p=h/: (1.40)

wheré h is the Planck bohstant (h =6.6 % 10734 J 5). The energy of the electron is thus
E = p*2m, s :

LR & (1.41)

E =~[ﬂ] n=1,2,...) .
= gm D) ¢

For a free electron, m = 9.1 X 103! kg, and D = 1 pm, E, =59 x 108

n2 J, so that the energy separation between then = landn = 2 levels is 1.8 %

10~24J. Atroom temperature, this energy separation is too small compared to the thermal

fluctuation energy k5T = 41.6 x 10722 J to be distinguishable from thermal fluctuation.
In addition, the electron mean free path at room temperature i usually .much smaller tl}an
1 wm. Scattering of electrons destroys the COBdiliDlEl for forming standing waves;n;ﬁig
eq. (1.39) inapplicable. However, as the film size is further reduced, say to D= ’

scattering is negligible and energy quantization becomes observable in comparison with

thermal fluctnation. The electron energy quantization will affect the electrical, optical,

and thermal properties of nanostructures and nanomaterials.

1.5.3 Fast Transport Phenomena

Size effects create deviations from commonly used classical laws lfy mposmg n;w
conditions at the boundaries. Transport at short time __s_cales.may_also d_xffe_;- significantly
from that at the longer time scales that we are used to. This difference is .because the
classical laws are commonly derived for time scales much Jonger than the time scale of
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Table 1.3 Basic characteristics of energy carriers

Free Electrons Phonons Photons Molecules’
Source Freed from Lattice Electron and Atoms
b nucleic bonding vibration atom motion

Propagation In vacuum In media In vacoum In vacuum

media or media or media or media
Statistics Fermi--Dirac Bose-Einstein Bose-Einstein Boltzmann
Frequency O-infinite Debye cutoff O-infinite O-infinite

or energy range
Velocity (ms™1) ~10% ~103 ~108 ~10?

microscopic processes. We can quickly estimate, for example, the average time interval
T between successive collisions of phonons as

T=A/v (1.42)

where A is the phonon mean free path and v the average phonon velocity. For many
materials, this relaxation time is of the order 10712 to 10710 s. Although this appears
to be an amazingly short time, a laser pulse can be as short as a few femtoseconds
(1fs = 10713 s). Clearly, if we deal with processes shorter than the relaxation time,
the classical Fourier diffusion law will no longer hold true, since the diffusion process
is established by considering the multiple collisions of the heat carriers such that their
motion is almost random. In addition to the relaxation time, there are also other time
scales that need to be considered, such as the time characterizing the energy exchange
between electrons and phonons. An example of the latter is the femtosecond laser heating
of metals (Qiu and Tien, 1993).
Table 1.3 summarizes the basic characteristics of energy carriers, including:

e Free electrons in solids, which are released from the bonding of the nuclei and can
propagate in solids as well in a vacuum;

o Phonons, which are due to atom vibration in crystals and cannot propagate in a
vacuum; .

e Photons, which are generated from the electron and atom motion and can propagate
in a vacuum;

¢ Molecules, which form due to bonding of atoms.

Electrons obey the Fermi—Dirac statistics and are called fermions, while photons and
phonons obey the Bose—Einstein statistics and are called bosons. Molecules obey the
Boltzmann statistics (classical) under most temperatures except when approaching abso-
lute zero, when Bose-Einstein statistics must be considered. The quantum mechanically
allowable energy (or frequency) of one carrier spans a wide range, from zero to infinite,
except for phonons for which the maximum is capped. The allowable energy only tells
what is possible, but not the average, which is determined by the temperature and the
statistics. The random average velocity of the heat carriers increases from molecules, to
phonons, to electrons, and to-photons, approximately. :
Table 1.4 illustrates the transport regimes of energy carriers. This regime table can
be best understood after reading through chapters 5-7. It divides the transport into
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Table 1.4 Transport regimes of energy carriers; O represents order of magnitude
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several regimes. The wave regime is where the phase infonnaﬁgn of thf: energy carriers

must be considered and the transport is coherent, and the artlch_’. regime is where the
hase information ¢ neglected and the transport is incoherent, In between. 1s.the

partially coherent transition regime from wave description to the particle dcscrlp?on.

The phase-breaking length is the distance needed to completely destroy the phzrs; o) lhz

" heat carriers through various collision processes such as phononfphonon collision ani
phonon-¢lectron collision, and it is usually wwbie to or slightly %onge_r than the
mean free path, The coherence length measures the dlSlE-ll'lCB beyond wiinch waves from
the same source can be superimposed without cousidenng. Lhe‘ p}.zase ‘mformamn. The
overlapping length scales in table 1.4 hint at the comph?my in judging when to treat
them as waves and when to treat them as particles, but this should become clearer after
we treat wave and particle size effects in chapters 5 and 7. . )

Most cngineerfﬁg courses teach only the classical transport theories; th‘aE is, t‘he
bottom row of table 1.4. Some engineering disciplines may be more familiar with
electromagnetic waves and photon radiative transfer: in .olhfar words, the co!ur.n.n for
photons. A wide range of transport problems fall into territories that are not familiar to
classical engineering disciplines but are becoming increa.smgly important in conterrf?o-
rary technology. This book covers these unfamiliar domains as well as the more familiar
regimes to help the reader solve problems on all scales.

1.6 Philosophy of This Book

The introductory discussion thus far suggests that, to deal with' micro- and nan(‘)scali
thermal energy transport processes, one needs to have a clear picture of t.he motion o
energy carriers and the thermal energy associated with their motion. This book aims
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Figure 1.17 Structure of this book.

to develop a unified microscopic picture on energy transport processes for elemen-
tary heat carriers including electrons, phonons, photons, and molecules. Figure 1.17
shows the structure of this book. We will began with the energy states of energy
carriers, which are established on quantum mechanical principles, solid-state physics,
and electrodynamics (chapters 2 and 3). The association of these energy states with
heat transfer comes about through the statistical distribution of heat carriers at equi-
Iibrium, where temperature enters the picture. Statistical thermodynamics is discussed
in chapter 4. Heat carriers have both wave and particle characteristics, as is implied
by quantum-mechanical wave-particle duality. The transport of thermal energy can be
analyzed from either the wave or the particle picture. It is important to understand when
to treat the carriers as waves and when as particles. A key question is whether the
phase information of the carriers is maintained or not in the transport process. Energy
transport as waves is treated in chapter 5, together with a discussion on when the wave
characteristics can be ignored so that the particle description alone is sufficient. Energy
transfer by particles is treated in chapter 6 on the basis of the Boltzmann equation,
from which classical laws valid at macroscales are derived, accompanied by discussions
on the approximations used behind the derivations. Classical size effects are treated
in chapter 7. Energy conversion between different carriers is discussed in chapter 8.
Throughout the entire text, attempts are made to treat all the energy carriers—electrons,
phonons, photons, and molecules—in parallel so that readers can draw analogies from
their previous engineering and scientific backgrounds. Liquid molecules, however, defy
such a unified treatment and thus chapter 9 is devoted to a discussion on liquids.
Direct simulation tools based on molecular dynamics are becoming increasingly use-
ful. Thus, chapter 10 introduces molecular dynamics techniques, with an emphasis
on the statistical foundation for analyzing the trajectory of the molecules obtained in
a typical molecular dynamics simulation. It should be noted that the linear response

theory introduced in this chapter has much broader applications than just to molecular
dynamics. : ' :



34 NANOSCALE ENERGY TRANSPORT AND CONVERSION

The text strives to develop connections and analogies umong the energy carriers. The
transport of these carriers is often discussed in various disciplines and is often c?nmdered
to be governed by different laws. The underlying principles, however, are either very
similar or identical, as is indicated by table 1.4, which justifies the attempt to du?velop a
parallel treatment. In this table, we divide transport into genex:aliy the wave regime and
the particle regime because all matter has both wave and particle chai'actensncs. In ttie
wave regime, the phase information of the energy carriers must be‘ conmdered,‘ whereas in
the particle regime, only the trajectory isimportant. The propaganon of rriatenai waves or
electromagnetic waves shares many similarities despite the differences in the' governing
equations. In the particle regime, the phase information of the energy carriers can be

“ignored. Particle transport, under most conditions, can be <iescnbed by the Boltz.r.nann
equation. The bottom line of table 1.4 lists the diffusion theories that most fe.adcrfs withan
engineering background are familiar with. Some readers may also be familiar Wl‘th prop-
agation of electromagnetic waves or photon transport (or an acoustic wave _eqm\:ralem}.
Other regimes in the table are most likely less familiar for readers in _engmeenng but
are often encountered in dealing with nanoscale transport. This book aims to cover the
transport in all of the aforementioned regimes, while developing a pa{allei treatment for
all carriers so that readers with different backgrounds can draw on their prior knowledgc
in exploring the nano-territory. Because of the wide range of to?ics co.vered in .I_ills
book, however, readers should be prepared to embrace new te_mn(iio'gle.s. 1 believe
that familiarity with different terminologies is a necessity for interdisciplinary work,
which is becoming increasingly important in our exploration of the “ample room at the
bottom.” '

1.7 Nomenclature for Chapter 1

a thermal diffusivity, m?2s~1 E allowed energy ievei, J ) .
A cross-sectional f probability distribution function
area for conduction, F inter:fnoimc force, N ) B2
and surface area g grav;tau_anal acceleration, ms o
for convection, m> h convection heat transfer coefficient,
B normalization factor Wm~2 K~!; Planck constar;[, J _sl
¢ specific heat,J kg~ K~! k thermal conductivity, Wm™" K
[ & “ yolumetric spééiﬁc heat, J m3K! k wavevectfir,'m .
d effective diameter L characteristic length, m .
of molecules, m m inass, kg j ¥
D diameter of cylinders n ml.ager; Pa:gwular number
or spheres; separation density, m =
of plates, m N,  Avogadro constant, mol™"
Dy hydraulic diameter, m Nu Nu'.?selt number
e emissive power per | D perimeter, m; - =
unit area, Wm™2 momentum, kg m s’
e spectral emissive power per rr Prandtl number
wavelength interval, © q heat flux

.o
‘Wm2pm™t ; vector, W m
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Q heat tran..er rate, W v kinematic viscosity, m?s~!; frequency
Ra Rayleigh number of phonons and photons, s~ ]
Re Reynolds number P density, kg m—3
t time,s o Stefan—Boltzmann constant, W m—2K~*
T temperature, K T relaxation time, s; time constant, s
u internal energy ‘ Tyy  shear stress, N m2
per unit volume, Jm™> , ¢ interatomic potential, J
u fluid velocity, ms™!
U system or‘i'nternal energy, J Subscripts
v molecular instantaneous
random velocity, ms™! a ambient
V  volume, m? b blackbody
W power output, W ' c cross-section
B thermal expansion coefficient, K™ A per unit wavelength
y  fin parameter, m™ w wall
kg Boltzmann constant, J K! x,y,z Cartesian components
. wavelength, m
A mean free path, m . Superscripts
1 dynamic viscosity, Nsm™;
chemical potential, J - average
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1.9 Exercises

1.1 Membrane method for thin-film thermal conductivity measurement. One
technique for measuring the thermal conductivity of thin films is to create a
freestanding film by removing part of the substrate, as shown in figure P1.1.
A thin-film heater is deposited at the center of the film. A thin layer of electrical
insulator (such as SiO; or SizNy) is used between the film and the heater if
the film itself is electrically conducting. The temperature rise of the heater is
determined by measuring the change in its electrical resistance. The Substrate
temperature is assumed to be uniform (alternatively, another temperature sensor
can be deposited at the edge of the film and the substrate). Thermal conductivity
along the film can be measured but one must be very careful to address various
factors that may affect the final results. Answer the following questions.

Heater,

1 \J.‘-‘;i‘/lnsumor

ey B
SUNE - Substrate

@

Figure P1.1 A thin-film conductivity measurement method (a) schematic of the cross-
section, (b) photograph of a fabricated heater, and (c) photograph of a the free-standing
silicon membrane. : : e "

(2) Derive an expression for determining the thermal conductivity of the film, given
the power input to the heater, the temperature rise of the heater, the temperature
of the substrates and the geometries, under the following assumptions: (1) heat
conduction is one-dimensional, (2) heat losses along the film are negligible, and
(3) the thermal resistance of the insulating film is negligible.
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ick sili ; 1 conductivity at room

b) For a 3um thick silicon membrane, the therma : . 08
i ter:fpt?:rature is 145 W m~!K~!. The measured temp‘erature rise of the heater_:s 2 C
Given the geometries in figure P1.1(b) and (c), estimate how much power input 1s

needed. . .
(c) For the silicon thermal conductivity measurement, an insulating layer must

be placed between the heater and the silicon film f?r_elecn'ical isolat_ulm.js'sum?f
‘a 200 nm thick Si0O; film with a thermal conductivity of 1.2 W"m K-lis us.o,
estimate what thermal conductivity you will get if th_c thermal resistance ofh the Si :
Tlayer is not taken'into account in analyzing the experimental data, based on the power
i dition given in (b). |

mp?:l)cgl[::w conf':dcr heaEblosses along the film. Tl;e tiolmbmed hez}t_ transfer cgeﬁi-
cient due to convection and radiation is 10 Wm.‘. K~*. For Lh.e sﬂzc_on me;md ranz
éxample given in (b), determine how much additional power input is needed as

result of this heat loss. ~ ’
(e) One concern in measuring low thermal conductivity membranes 18 the heat

“loss along the heater, which has a relatively high :.hermz_il c_onducsivlt'y. Assunun:i
" that the heater thickness is # = 200 nm and the mattj,na] is gold with a mengl
conductivity of 315 Wm™ K™, develop a model to estimate the heat loss along the
heater to the substrate. »

1.2 AC calorimetry method for measuring thin-film :herma% diffusivity (Hatta, IQ?GII.
One thin-film thermal diffusivity measurement method is to use amodulated light
source to heat up a membrane, as shown in ﬁg.ure P1.2. A s¥11a]1 tcmperaut.lil;c
sensor, either a tiny thermocouple or a microfabricated sensor, is placed onto the
film. The distance between the film and the temperature Sensor 1S controlled by a
mask that blocks part of the light source. Amplitude and phase of the temperature
response are measured as a function of the djstagcie L 'between the lemp‘eratlie
sensor and the edge of the light source. This is equivalent to measuring | e
distribution of the amplitude and phase as a t'uncuon‘of x. Derive an e?cpressmg
for determining the thermal diffusivity on the bas‘ls of (a? p?lase signal ain
(b) amplitude signal. List all the assumptions made in establishing the model.

P=Asin{ot)

F:

ga Temperature Sensor

Figure P1.2 AC calorimetry method for determining thermal diffusivity of thin films.

1.3 Cross-plane thermal conductivity measurement of thin films: s':ealdy-srare
method. The measurement of the thermal conductivity perpendicular to a

1.4

INTRODUCTION 39

thin-fin. plane (cross-plane) is difficult because the temperature drop across
. a thin film is small unless a high heat flux is applied. Since thin films are
usually deposited on a substrate, one-dimensional heating is unfavorable because
a large temperature drop would occur across the substrate rather than the film.
To avoid this situation, one solution is to use a narrow heater pattermed directly
on the film, as shown in figure P1.3. In this case, the heat flux through the film is
high but the heat spreading inside the substrate lowers the heat flux, leading toa
relatively large temperature drop across the film compared to that in the substrate.
. For the given configuration, we can assume that the heat flux is uniform from
the heater into the substrate. If the substrate thermal conductivity is known,
the thin-film thermal conductivity can be determined from the measured heater
temperature rise. In this problem, the substrate is silicon with a thermal con-
ductivity of 145 Wm~!K~! and the film is SiO; with a thermal conductivity of
1.2Wm™ KL &
(a) Assuming heat conduction is two-dimensional, derive an expression for the
average temperature rise of the heater.

Figure P1.3 Figure for problem 1.3

_ (b) Theideal case is that heat conduction through the film is one-dimensional. For

a 400 nm SiO; film on a silicon substrate and a heater 10 p.m wide and 2 mm long
with a power input of 40 mW, compare the exact solution for the average heater
temperature with the approximation that heat conduction inside the SiO; is
one-dimensional. TRorA Fi A : : Py

(c) Determine the temperature drop across the film and inside the substrate.

(d) Estimate the heat loss through radiation and convection and compare its
magnitude with that of heat conduction. .
Cross-plane thermal conductivity measurement of thin films: 3w method (Lee
and Cahill, 1997). One disadvantage of the steady-state method in problem 1.3
is that the backside temperature of the substrate must be known. In reality,
the substrate is placed on a heat sink and the backside may not be at uniform
temperature. In addition, the thermal resistance between the substrate and the
heat sink also changes the temperature of the substrate. To avoid this situation,
heat input into the heater can be modulated by a sine input current at angular

-frequency . In this case, power will be modulated at 2w, leading to a 2w

temperature oscillation and corresponding electrical resistance oscillation of the
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héater, due to the temperature dependence of the resistance. This rfs;stan};:e
oscillation at 2w leads to a third harmonic co'mponent in the heater voltage. 'Sz
measuring the phase and amplitude of this @rd harmonic, the tm?mperat;re&n

of the heater due to the modulating power input can be determined and, from

this, the thermal conductivity of the film can be determined. This is called the 3w -

meeos orm of A sin (2wt), derive an expression for

2) Assuming a power input of the fi : !
thc(irz-phase {siﬁe function) and out-of-phase (cosine function) components of the

i i al diffusivity,
_ Assume that all the thermal properties (therm
el odttisty, ani soe at) of the film and the substrate are known.

1 conductivity, and specific he _
lhe?;;aonc additiotgal advantage of the 3w method is that the substrate thermal

conductivity can be determined from the frequ'ency_ dependency (?f. the temperature
response under appropriate conditions. Try to. identify lhesg c?ndliuons‘aﬂ ey
() Another advantage of the 3w method is that the radmtmr! 08§ ¢ T o
mized, which is particularly important for low {he:rmal condz_mlzvny materi
measurements at extreme temperatures (low and high). Explain why. ¥ o
1.5 Thermal diffusivity determination of thin ﬁims:' laser ?ulse method. 1ne: me e
for determining the thermal diffusivity of a thin film is to use a short z;ser pu_d
to heat up the front side of the film and to measure the decay of the b::mt si e:
temperature by monitoring the change in reflectance of a proble lasozrﬁ1 am (;; 5
figure P1.5). The short pulse concentrates temperature drop in the film rather
than across the substrate. In this case, it is not the absolute surface temperature
rise that is measured but the normalized profile of the surface temperature decay

as a function of time. For a heating pulse of the following profile,

0 t<0
g=1q0 O0<t<tp
0 t>1p

(a) Derive’an expression for the temporal response of the front Sl.lffi:lCE, tc?n}peraturii
assuming all thermal properties (thermal conductivity k, thermal diffusivity &, an
specific heat c) are known for both the film and the substrate.

Figure P1.5 Figure for problem 1.5.
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(b) whatare the requirements on the pulse width that will maximize the sensitivity .
.- for measuring the thermal diffusivity of the film? -~ =~ . . ¢
1.6 Lumped heat capacitance and time constant. Develop a lumped capacitance °
model for a solid sphere at uniform temperature 7; that is suddenly immersed
inside a liquid at temperature Tg. In such a model, the temperature of the solid is
assumed to be uniform, and the beat transfer coefficient between the solid object
and the fluid is taken to be k. Other known parameters are the surface area A,
the volume V, the density p, and specific heat ¢ of the solid.
(a) Derive the differential equation governing the temperature history of the solid.
(b) Solve the equation and find the time constant of the process.
(c) Investigate how the time constant varies with the diameter of the solid
sphere.

" 1.7 kBT energy. One unit for energy is the electron-volt (eV). It is the energy differ-

. ence of one electron under a potential difference of 1 V. Convert 1 k5T at 300 K
into milli-eV (meV). e
1.8 Thermal conductivity of gases. Estimate the thermal conductivity of air and argon.
as a function of temperature between 300 K and 1000 K at 1 atm.
1.9 Mean free path in air. Estimate the mean free path of air molecules as a function
of temperature at atmospheric pressure on the basis of (a) kinetic theory and
. (b) experimental data on the thermal conductivity and specific heat of air. '

- 1.10 Speed of electrons. Estimate the average random speed of an electron gas in a

semiconductor at 300 K. :

AT Thermal conductivity of liquid. Although the application of Kinetic theory to

a dense liquid is questionable, estimate the thermal conductivity of water. at
room temperature on the basis of a simple derivation for the mean free path
and the results from the kinetic theory. This estimation is typically smaller than
experimental values because, for liquid, potential energy exchange contributes
to heat conduction. v
1.12 Phonon mean free path and relaxation time. Given the thermal conductivity of
Si at room temperature as 145 Wm™!K~!, the speed of sound as 6400 ms—!

_the volumetric specific heat as 1.66 x 106 Jm—3K~!

(a) Estimate the phonon mean free path in Si at room temperature from the
kinetic theory. In reality, this estimation usually leads to a much shorter mean free .
path (about a factor of 10 shorter) than with more sophisticated modeling.

(b) Estimate the relaxation time of phonons in silicon,

’

1.13 Fick’s law of diffusion. Using a simple kinetic argument that is similar to the

derivation of the Fourier law, detive the Fick law of diffusion, which gives the
mass flux for species i under a concentration gradient as
» dm;
Ji=—pD—
i 4 T
where D is the mass diffusivity, p is the density of the mixture, and m‘,- the local
.mass fraction of species i. ey

- .14 Newton’s shear stress law. Using a simple kinetic argument that is similar to

the derivation of the Fourier law, derive the Newton law of shear stress (in
one-dimensional form). Hint: consider the momentum exchange across a plane
parallel to the flow. “ ARy S :
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1.15 Ene uantization. vl ) |
(;‘%yAqssuming a person weighing 100 kg trapped deep inside a two-dimensional
ditch 1 m in width, estimate the energy difference between the first and .second

quantized energy levels. Compare this energy difference with the thermal fluctuation

energy xpT for T =300 K. ! ) o
(b) Assuming an electron of mass 9.1 X 10731 kg is trapped inside a two-

dimensional infinitely high potential well, plot the first and second energy levels
of the electron as a function of well width between 10 and 100 A. Also mark the

thermal energy x 3 T-on the graph for T = 300 K.

2

Material Waves
and Energy Quantization

- For macroscopic systems, we take the continuity of many variables for granted, including
the continuity in energy. For example, the heat flux along a rod through conduction,
according to the Fourier law, can be continuously varied to any desired value by con-
trolling the temperature difference and the material properties. The microscopic picture
of energy, however, is entirely different. According to quantum mechanical principles,
the permissible energy levels of matter (electrons, crystals, molecules, and so on) are
often discontinuous. Differences in allowable energy levels among materials are major
factors that distinguish them from each other. For example, why is glass transparent in
the visible light range but not silicon, and why are some materials electrical insulators
but others are conductors?

" In this chapter, we introduce the basic quantum mechanical concepts necessary to
appreciate various energy states found in different materials. It should be remembered

-+ - Which state the matter will be in. The Jatter depends on the temperature, a topic we will
. discuss in chapter 4. Important concepts that should be mastered through this chapter
include the wave-particle duality, the Schrodinger equation and the meaning of the
wavefunction, the Pauli exclusion principle, quantum states, and degeneracy. Solutions
of the Schrédinger equation for various simple yet very common potentials will be
given. Key concepts and results of this chapter are summarized in the last section of
the chapter. '
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- that these energy states represent the range of possibilities for the matter but do not tell |

it
3



